Heterogeneous Computing in ARM Architecture

Media Processing Division ARM June 25th 2013

Bringing Visual Computing to Life

Agenda

Trends in Heterogeneous Computing

- GPU Computing with ARM[®] Mali[™]-T600 series as example
- Heterogeneous System Architecture[™] (HSA) is the future

ARM

ARM and HSA

FOUNDATION

Trends in the Industry

- Heterogeneous multiprocessing
 - Established approach for SoC design
 - Mix of many specialized accelerators, implementing different ISAs
 - Diverse programming approaches lead to lack of portability
- Parallel computation for performance and efficiency
 - Endorsed at all levels of computer architecture
 - Parallel programming traditionally difficult
- General purpose programmability of GPUs
 - Massive parallel computation potential
 - Increasing programmability

What is Parallel Computing?

Simply, doing multiple tasks simultaneously

Task-Parallel computing does different tasks concurrently

- Reading email, playing music, and surfing the web are all separate tasks
- In a multicore system, these can execute simultaneously

Data-Parallel computing does the same operation on a collection of data concurrently

- Adjusting the contrast of the pixels of an image
- Each thread executes the same code but with different data
 - Classic SIMD (single-instruction, multiple-data)
- GPU computing is perfect for data-parallel applications

What is Heterogeneous Computing?

6

ARM

Complementary Processor Architectures

- Serial workloads and task parallel workloads
- < 10 threads</p>
- 1-4 cores
- Short pipeline, <20 stages</p>
- Low latency
- General purpose
- SIMD engine

- Data parallel workloads
- 100s-1000s threads
- 1-100s cores
- Long pipeline, >50 stages
- Very high latency
- High throughput
- 2D/3D Graphics
- Stream processing

GPU Compute Making the Difference

GPU COMPUTING Mali-T600 as Example

Mali-T600 GPU Series Overview

- Innovation and market leadership
 - Tri-pipe ALU design optimal graphics and GPU compute
 - Native 64-bit integer and floating point (IEEE 754-2008), scalar and SIMD
- Flexibility and scalability
 - Mali-T624 and Mali-T628 for smartphones and SmartTVs
 - Mali-T678 for the best in compute and graphics for tablets
- Software compatibility and comprehensive API support
 - DirectX[®] 11, OpenGL[®] ES 3.0
 - OpenCLTM Full Profile and RenderscriptTM compute
- Performance
 - 100s of GFLOPs of arithmetic performance

Mali-T628

What about OpenCL?

- OpenCL is an API for heterogeneous computing
 - Write one source, deploy on many type of processors
- Currently, it's targeted for data-parallel applications
- Applications use kernels to process data provided to the OpenCL runtime
 - Kernels are written in OpenCL C
 - Subset of C99 with the addition of vector data types (e.g. float4)

GPU Computing with no compromises

- Embedded Profile is a subset of Full Profile, reducing features and precision
- All shipping processors openly programmable with OpenCL 1.1 are Full Profile
- All mainstream developers are producing for Full Profile
- All existing software in the industry has been developed for Full Profile

Feature	Benefit
Native support for 64-bit integer maths (scalar and SIMD)	Radically faster and more efficient than software emulation Beneficial for multimedia encoders/decoders and encryption software, pointer arithmetic for the post 4Gb world, large counters
IEEE 754-2008 compliance	Same floating point accuracy on a Mali-T600 Series GPU as any other Full Profile conformant platform
Hardware accelerated support for 3D images	Great for volumetric modelling Useful in physics, games
Built-in atomic operations	Accelerated in hardware on Mali-T600 No need for expensive external memory synchronization or emulation Cornerstone of parallel computation

With Mali-T600, ARM is the first IP vendor to pass conformance for OpenCL 1.1 Full Profile

OpenCL Platform Model on Mali-T600

Job manager handles everything in hardware:

- Issuing all tasks to available cores
- Handling out-of-order execution queues
- Continually spawning work items (threads) to keep cores busy
- Providing work item IDs
- Per-job completion interrupts can be requested

Work-items run as a single thread on a core A whole work-group executes on a single core Each thread has its own registers, PS, SP, private stack

OpenCL Programming Model

OpenCL Execution Model on Mali-T600

OpenCL Execution Model on Mali-T600

Coherency on Cortex[™]-A15 & Mali-T600

- Coherency allows the sharing of on-chip data
 - Reduces external memory access
 - Saves power
- Compute subsystems for SoC
 - Designed and optimized by ARM
- Cache Coherent Interconnect
 - Enables hardware cache coherency
 - Increases available CPU performance
 - Reduces the need to access external memory
- Improved OpenCL performance across CPU and GPU
 - GPU snoops into CPU caches
 - Enables simple sharing of data between processors

GPU COMPUTING ON MALI

Mali GPU Compute is here now!

Certified Khronos Conformant

OpenCL 1.1 Full Profile on Linux and Android

Mature, Proven in Silicon

- Samsung Exynos 5 Dual, implements Full Profile
- OpenCL and Renderscript DDK available now
- Proven performance benefits with Kishonti Benchmarks

Shipping in real products

- Google Chromebook
- Google Nexus 10
- InSignal Arndale Community Board
- API exposed for developers
 - OpenCL on Linux for Arndale platform
 - Renderscript computation on Android for Nexus 10

<u>Nexus 10</u> Google Experience Device for Android 4.2 Pioneering GPU Computing on Android

<u>Chromebook</u>

<u>Arndale</u> First OpenCL low-cost embedded dev platformd

Mali GPU Computing Demos

Physics Simulation (ARM)

OpenCV Face Detection (ARM)

MULTICORE Advanced Image Processing

- RenderScript is the official Heterogeneous Compute Android API
- Since Android ICS 4.2 it has been enabled to target the GPU
- Complex image filters can be greatly accelerated by GPU Compute

Filter	Speed-up [1]	
MotionBlur	3.5x	
Cloud	4.2x	
Labyrinth	3.8x	
TitleReflection	7.3x	
WhirlPinch	3.6x	
Wave	7.0x	
Bicubic	15.4x	

ARF

[1] Acceleration compares RenderScript compiled on device (LLVM) on dual-core Cortex[™]-A15 and Mali[™]-T604 on a stock Google Nexus[™] 10 device

Video Processing APK

- MulticoreWare Transcoding/Processing Pipeline
 - Image filters implemented using RenderScript
 - Optimized for ARM + Mali-T600 GPU Compute

Filter	FPS (GPU+CPU vs CPU only)	Speed-up
Deshake (720p)	28 / 8	3.5x
Upscaling (720p to 1080p)	20 / 3	6.7x
Bringing Visual Computing to	l ife 22	ARM

Mali GPU Computing Ecosystem

Summary

- Compute more efficiently using heterogeneous and parallel processing
- Use OpenCL to enable portable heterogeneous multiprocessing
- Mali-T600 GPUs brings efficient GPU computing to you...now

